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Abstract 

The equations of motion of a charged particle in a 
travelling-wave accelerating cavity are those of a harmonic 
oscillator with a varying restoring constant. This restor- 
ing constant is negative for transverse motion, resulting in 
diverging trajectories. The restoring constant is positive 
for longitudinal motion. For many years the only solution 
to the equation in the program TRANSPORT [l] was for 
massless particln. The WKB approximation of quantum 
mechanics yields a very accurate solution for massive parti- 
cles. It allows both the amplitude and the wave number of 
the trajectory to vary as the cavity is traversed. Solutions 
arc approximately 30 times more accurate than previously 
published. Comparisons arc made with numerical integra- 
tion. 

1 Introduction 

The original derivation of the transfer matrix for the 
travclling-wave sccelerator cavity was for electrons. It as- 
sumcd an ultra-relativistic beam in which the mass of any 
particle was negligible compared to its kinetic energy. For 
many years this ultra-relativistic approximation wm the 
only option in the computer program TRANSPORT. [l] 
People who wanted to design proton or ion beams con- 
taining accelemting cavities had to work with a very bad 
approximation. 

In the 1987 edition of this conference, Hurd and McGill 
[z] (henceforth referred to simply as “Hard”) pointed out 
the need for a representation of an accelerating cavity for 
massive particles. They also provided a representation 
which was a substantial improvement over what was prc- 
viously available. 

In the travclling-wave accclerstor cavity, both the ampli- 
tude and the wavelength of the transverse motion changes 
as the particle is accelerated. The wavelength of the trans- 
verse motion is not the same as the wavelength ofthe scccl- 
crating field. Hurd approximated the solution by holding 

‘Opuntcd br the “nixr.itie. Re,e.rcb .4s,ocistiion. Inc. andcr 
conl-t with the U.S. Dcprrtment OI En- 

the wavelength constant and letting the amplitude vary. 
About the same time the present author produced a solu- 
tion where the wavelength varied and the amplitude was 
held constant. The two solutions vex of comparable ac- 
curacy. An exact solution WM also derived by this author 
using Rungc-Kutts integration. The two solutions differed 
from the exact solution by about one percent. 

It is desirable to have a solution which satisfied two cri- 
teria: (1) It is accurate to the number of decimal places 
which arc printed out in the transfer matrix by TFLANS- 
PORT. (2) It longitudinally segments to the accuracy that 
the transfer matrix is printed by TRANSPORT. Previ- 
ously, the accelerating cavity for massive particles was the 
only element in TRANSPORT for which longitudinal scg- 
mcntation 7vas not exact. 

The WKB approximation of quantum mechanics [3] al- 
lows both the amplitude and wavelength of the motion to 
vary as the particle is accelerated. It is an approximation 
which may be iterated to any level of accuracy. We found 
that a single iteration was sufficient to produce the desired 
accuracy. The discrepancy from the exact solution was re- 
duced from the two previous approximations by a factor 
which ranged from 20 to 200, depending on the numbers in- 
volved and the specific matrix element. Below we give the 
analytic derivation of the cxprcssions and make compar- 
isons with numerical solutions produced by Runge-Kutta 
integration. 

2 Transverse Motion 

The transfer matrix elements arc rcferrcd to the stan- 
dard six coordinates as used in TRANSPORT. They e.re 
x, I’, y, and y’ in the transverse plane, and f and 6 in the 
longitudinal direction. The quantity .! describes the lon- 
gitudinal separation between two particles as a function 
of distance along the reference trajectory. The quantity 6 
is the fractional momentum deviation from the reference 
particle. 

In the description of the equations of motion we shall 
follows Hard’s paper. [z] (41 [5] We arc unable to improve 
on his presentation. We shall also employ his notation. 



The electric and magnetic fields are raaumed to be con- 
.hnt over the length of the accelerating cavity. They are 
approximsted then by: 

E,= ;AEW+, E, = ~(*)~Eh4 (I) 
QZ=+$& 

Here AE refers to the maximum possible energy gain of 
the cavity, and 4 to the synchronous phase of the p&i- 
clc. The energy gain of the synchronous particle is then 
AEco*+. The wavelength of the rf field is X. The qusn- 
titiea -y and fi are relativistic factors and c is the speed of 
light. The subscript “a” refers to the synchronous particle. 
The charge of the particle being accelerated is q. 

In the derivation we shall also use a quantity q which 
is the product of 7 and p. The additional subscripts “o” 
and “f refer respectively to the initial and final vduea of 
the quantities to which they arc attached. The length of 
the accelerating cavity will be L. The rut energy of the 
particle is mc’. 

The expressions for the Aclda lead to the first-order equa- 
tion for the transverse motion of the particle: 

~%P,j$-z = (“~,&p 

We are awxning that the rate of energy gain with dis- 
tance is uniform over the accelexsting cavity. This means 
that 7 changer uniformly with distance and its derivative 
for the aynchranoua particle is given by: 

y - “fy (6) 

The integral It may then be evduated by a binomial cx- 
pansion. Taking out the constant factor fl, we have: 

J: 3 = -#A-, - :$$*d’ 

-&(A+ + f&W"] 

where AT = 7.1 - 7.. (8) 

The WKB approximation yields solutions for the trana- 
fer matrix elements as follwi?s: 3 Longitudinal Motion 

RI, = R.,s = (~)+[cosh(lt) 

-p+h(I,)] 

RI> = RN = $($)i”inh(It) AywLAd d”,” = 

&I = 14s = +[-&- - +j,,,h(l,) 
‘l.,,.. 4.1 

+l(E)‘f - &*]hh(It) 

RU = & = i$$-&linh(Ie) + (z!+corh(Ic) 

We first formulate the equations of motion in the lon- 
(3) qtudind direction in terms of the particle energy W, and 

Its phase 4. The synchronous energy is W, and the ayn- 
chronous pharc is 4.. The deviations of a given particle 
from these quantities are given by AW and A& The first- 
order equations then become: 

&.y-* AW 
* - A ,:,Wmc 

(9) 

The quantities used are related, in first order, to the 
standard TRANSPORT variables by: 

(=$$-?a+ A.?- IW and ,. - E w. 

where (4) The WKB approximation yields solutions for the longi- 
tudinal transfer matrix elements w follows: 



Rsr = ~f[(~)+coa(rc) 

+$i&G(~P-&Wdl 

Rss = -P.,P..A Lrnr’ 2r U,h,,GN~P%, 

-(~)-%.lc-(~c) : 

-[A $$f $ + &G$bin(h)} 

%a = -+&\/v;*in(Id ‘-1 

%s = (~)+~[co~(r~) - f&‘n(Ir)] 

Here 11 = s: $x 

and QL = 2Q 
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4 Comparison of Results 

Numerical comparison of the values of the transfer ma- 
trix elements derived from Runge-Kutts integration and 
from the old and new versions of TRANSPORT. The cx- 
ample used is from Hurd’s article. The initial energy is 
100 McV, the energy gain is 3.19 MeV over a length of 
290 cm, and the synchronous phase is 30 degrees. There is 
some s!ight discrepancy with the exact values e.a printed in 
Hurd’s article, which is probably attributable to rounding 
error in taking the parameters of the accelerating cavity 
directly from his article. 

Numerical Transport Trnnsport 
Element Integration (Old) (N-1 
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&I = &a 1.386 0.0 1.386 
&a = 144 1.179 0.973 1.179 
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R.. 2.059 0.0 2.060 
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Rae 0.624 0.997 0.624 
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